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Recently D. Bergman introduced a method for obtaining bounds for the effec- 
tive dielectric constant (or conductivity) of a two-component medium, This 
method does not rely on a variational principle hut instead exploits the proper- 
ties of the effective parameter as an analytic function of the ratio of the com- 
ponent parameters. We extend the method to multicomponent media using 
techniques of several complex variables. 

KEY WORDS: Multicomponent stationary random media; bounds for the 
effective dielectric constant; integral representations; several complex variables. 

1. I N T R O D U C T I O N  

Because of the difficulty of calculating the effective parameters (e.g. dielec- 
tric constant, or thermal or electrical conductivity) of a heterogeneous 
medium, there has been much interest in obtaining bounds for these 
parameters. WienerS) ) gave optimal bounds for the effective parameters of a 
multicomponent material with fixed volume fractions and real component  
parameters. For isotropic materials, Hashin and Shtrikman (2) improved 
Wiener's bounds using variational principles. Recently Bergman (3 10) 
introduced a method for obtaining bounds on complex effective parameters 
which does not rely on variational principles. Instead it exploits the proper- 
ties of the effective parameters as analytic functions of the component  
parameters. The method of Bergman has been elaborated upon in detail 
and applied to several problems by Milton. (ll 16) A mathematical  for- 
mulation of it was given by the authors in Ref. 17. However, aside from 
Bergman's trajectory approach which is discussed below, the method has 
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been restricted to two-component materials, where the effective parameters 
are functions of a single complex variable, the ratio of the component 
parameters. In this paper the analytic continuation method is extended to 
multicomponent media in a direct way for the first time. In particular, we 
obtain the analog for several complex variables of the single variable 
integral representation for effective parameters given in Ref. 17. The exten- 
sion is illustrated by rederiving the Wiener bounds for multicomponent 
media and by proposing new complex versions of them which are based on 
a hypothesis that cannot be verified at present. In another paper, 
Golden (181 rederives the Hashin Shtrikman bounds for multicomponent 
media and gives new complex versions of them, based again on an 
unproven hypothesis. 

In Ref. 17 the integral representation involves a complex kernel con- 
taining the component parameter information and a positive measure con- 
taining information about the geometry of the composite. For three-com- 
ponent materials, one of the two complex variables can be fixed as a mul- 
tiple of the other, so that the effective parameters are treated as analytic 
functions of a single complex variable. Bergman (3"9~ has applied the single 
variable analytic method in this case to obtain the real Hashin Shtrikman 
bounds. However, this approach makes the above-mentioned measure 
depend upon the component parameters as well as the geometry of the 
composite. The problem is to give a direct extension of the analytic con- 
tinuation method. That is, to find a representation for the effective 
parameters from information about the geometry of the composite. We 
have done this by treating the effective parameters explicitly as analytic 
functions of several complex variables. 

The multicomponent representation formula is significant for the 
following reason. As in the two-component case, the effective parameters 
can be expanded about a homogeneous medium where the component 
parameters are equal. The information in this perturbation expansion can 
then be used along with the representation formula to continue the effective 
parameters beyond nearly homogeneous materials to their full domain of 
analyticity. 

2. A N A L Y T I C I T Y  OF THE EFFECTIVE P A R A M E T E R  

We assume that the medium under study is an N-component 
microscopically isotropic dielectric. Our formulation of the multicom- 
ponent problem is the same as in Refs. 17 and 19. Let (f~, Y,  P) be a 
probability space and let e~i(x, ~o) be strictly stationary random fields tak- 
ing N complex values el,---, eN on x~  Na, ~o E f2. Assume that there is a 
translation group %, x~ Na, which is one to one on s and preserves P. 
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Then with each s tat ionary r andom field f(x,  co) we associate a measurable 
function f(co) via f (r  _xco) = f(x,  co). 

Let Ek(x, co) and Dk(x, co) be two stat ionary r andom vector fields 
satisfying 

d 

D (x, co) = col E (x, co), i =  1 ..... 4 (2.1) 
j -  1 

V. Dk(x, co) = 0 (2.2) 

V x Ek(x, co) = 0 (2.3) 

faP(dco) Ek(x, co) = (2.4) ek 

where e ,  is a unit vector in the k th  direction for some k =  1, 2 ..... d. The 
effective dielectric constant  e~'~ may now be defined as 

* -!r~ P(dco) D~(co) (2.5) E ik I 

In Ref. 17 we showed that this ensemble average coincides with the more  
s tandard definition involving a volume average. 

We focus at tent ion on media of the form su(co)=a(co ) 6u, where 
e(co) = e~Zl(co) + "'" + aNZN(CO). The indicator function Z~(co) of medium l 
equals one for all realizations co e f2 which have medium l at, say x = 0, and 
equals zero otherwise. Since (2.1)-(2.5) are linear in a(co), a~'~ depends only 
on the ratios h i = S]eN, i =  1 ..... N - -  1. We write 

m i k ( h l , . . . , h N _ l ) = ~ N =  P(dco)  hjZj(CO)+ XN Eki((o) 
j 1 

(2.6) 

Clearly mik has the same domain  of analyticity in C N -  I as does E~. F rom 
analysis of (2.2) it can be shown/2~ that if (hi,..., h~v_ 1) is finite and such 
that there exists a unique solution E,.* to (2.2)-(2.4), then E,.* is analytic at 
(hi,..., hN 1)- Determining the existence and uniqueness of E) ~ is facilitated 
by reformulat ing (2.2) (2.4) in the Hilbert  space ~ = {fi(co) ~ L2( g2, Y ,  P), 
i= 1,..., d l L,fj=Ljf~ weakly and .[a P (dco) f i ( co )=0} .  Here the Li, i =  
1,..., d, are the infinitesimal generators  of the unitary group T~ induced by r x 
through (TJ ) (co )=f (  ~ xco). Now the problem becomes to find 
G~(co) e ~ such that  

d 

I~P(dco) ~ e0(co)[G~(co) + 3j~] f,(co) = 0 (2.7) 
i,/= 1 
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which is a weak version of (2.2) under (2.3) and (2.4), where the bar 
denotes complex conjugation. By applying the Lax-Milgram lemma (2~/ to 
the bilinear form associated with (2.7), one finds (2~ that there exists a uni- 
que E~ when the convex hull of { 1, h~ ,..., hN ~ } does not contain the origin 
inC. Thus m~k is analytic when (h~ ..... hx 1) satisfies this condition. 
Furthermore, from the symmetric form of the definition 

d 

s f  = fa P(&o) ~ ;(co) El(co) E}(c0) (2.8) 
. j =  1 

it is apparent that the diagonals mkk map {Im h I >0}  x ... x 
{ ImhN_~>0}  into the upper half-plane with rnkk(l~ t ..... /IN_~)= 
m-~(hl ..... hN_ j). 

3. BOUNDS FOR T W O - C O M P O N E N T  MEDIA  

Let h = a l / s  2, s =  1 / (1 -h ) ,  and Fi,(s)=fiik--mik(h). From Section 2, 
mik(h) is analytic off the negative real axis ( - o0, 0], or Fa.(s) is analytic off 
[0, 1]. In Ref. 17 we proved that there exist finite Borel measures #~k(dz) 
on [0, t) such that the diagonals l~k(dz ) are positive and 

F,k(S) = ), i , k = l  ..... d, sr  [0, 1] (3.1) 

One proof of (3.1) depends on the operator representation arising from 
(2.2), 

Fik(S) = j" P(dco) Z l [ ( s +  F)(l ) -1 ek] "el (3.2) 

where F =  V ( -  A)-1 V. with Li replacing O/Oxi in the differential operators. 
In the Hilbert space L2(f2, ~ ,  P) with weight ;(i(co) in the inner product, 
FZI is a bounded, self-adjoint operator of norm tess than or equal to I. The 
formula (3.1) is the spectral representation of the resolvent ( s+FzI )  -I 
where #ik(dz) is the spectral measure of the family of projections of FZl. 
Another related proof exploits the fact that -Fkk(s)  has positive imaginary 
part when Im s > 0, and is analytic at s = oo. Then a general representation 
theorem in function theory (221 gives (3.1) for the diagonals i=k .  It is this 
function theory approach that we will use to extend the analytic method to 
multicomponent media. 



Bounds for Effective Parameters of Mu l t i component  Media  659 

For Isl > 1, (3.1) can be expanded about a homogeneous medium 
( s=c ~  o r h = l ) ,  

, (0) t / (1)  ,1(2)  

F,~(s) = ~'i--Z-~s + ~ s ~ *~ ---r-+ q- "" ", ~"I") = S# ,k (dz )  (3.3) 

Equating (3.3) to the same expansion of (3.2) yields 

ffS/~ ) : ( - -  1 ) n f f  2 P(d(.o) [ - Z l ( ] ~ I )  n ~~ "e  i ( 3 . 4 )  

When i =  k the moments/t~'~ ~ uniquely determine the positive #kk .(23) Thus 
(3.1) provides the analytic continuation of (3.3) to the full complex s plane 
excluding [0, 1 ]. When i r  k,/~ik is a signed measure of mass 0. 

We now focus on one diagonal coefficient ek* and call it e*, with F =  
l - m =  1 - e * / e 2  and representative /~. Bounds on e* are obtained as 
follows. If only the volume fractions p~ and P2 = 1 - p~ of the two media 
are known, then (3.4) fixes only the mass of #, with #~o~= p~. For  fixed 
sqi [0, 1], extremal values of the linear functional F(s, #)  are attained by 
one-point measures 1~(~ 0 ~<z < 1, since they are the extreme points 
of the set of positive Borel measures of mass /~m) on [0, 1). Applying the 
same considerations to E(s)  = 1 - e l / e *  restricts e* to a region in the com- 
plex plane bounded by two circular arcs. When s > 1 this region collapses 
to an interval ( p l / e l + p 2 / e 2 ) - ~ < < _ e * < ~ p ~ + P 2 ~ 2 ,  the classical Wiener 
bounds, which are attained by parallel plane configurations of the 
materials. 

If the material is further assumed to be statistically isotropic, then/~/~) 
can be calculated as well, 1~7) the result being /,I~)= p~p2/d, where d is 
dimension. Now F in (3.3) is known to second order, but can be transfor- 
med to a function Fl of the same type (3.1)o,m.2o) known only to first order 
via 

1 1 
F, ( s )  = (3.5) 

p~ sF(s) 

The measure #l(dz) that represents F~(s) has mass/~0) = P2/Pl d. Applying 
the above considerations to F~ and E1 = 1 / p 2 - 1 / s E ( s )  restricts e* to a 
region again bounded by circular arcs which lie inside the first order 
bounds above. When s ~> 1 the region collapses to the Hashin-Shtrikman 
bounds 

/~1 ~" P2 ~< e* ~< e2 -4 Pl ~1 "%< e2 (3.6) 
1/(g2  - -  e l )  "b p l /dg l  l / ( g l  - g2) -k p2/d~2'  
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which are attained by coated sphere geometries. The complex bounds can 
be improved (~Sa~ by incorporating the interchange inequality (24"25) 
re(h) m(1/h) ~> 1, which becomes an equality for d =  2. 

The higher moments p~"), n >~ 2, depend on (n + 1 )-point correlation 
functions and cannot be calculated in general, although the interchange 
inequality forces relations among them. (u'-~~ If p(o~,..., #(,,-~) were known, 
then the transformation (3.5) can be iterated to produce a function of type 
(3.1) known only to first order, so that its extremization is the same as 
above. Baker (26"27) was the first to use such an iteration procedure in a 
slightly different form to obtain nth-order complex bounds on upper half- 
plane functions like F(s). His work was done in the context of Pad6 
approximants to Stieltjes series. Independently, in the context of 
heterogeneous media Milton t ~  used another method to obtain n th-order 
complex bounds on ~*, which reduce for real component parameters to 
those obtained from variational principles. Felderhof (28~ reformulates 
Milton's bounds, and Golden ~'2~ discusses the iterative approach based 
on the transformation (3.5), while Baker's approach is the most general. 
The relationship of Milton's bounds to bounds on Stieltjes series is dis- 
cussed by Milton and Golden, ~-9/where a slightly different formulation of 
the iteration is given. Bergman (~~176 introduced the transformation (3.5). It 
is in fact equivalent to the transformation which underlies Baker's work. 
Bergman used it and a variant to derive second-order bounds on ~*. Sub- 
sequently, Kantor and Bergman ~3~ suggested iteration of (3.5). 

4. T H E  P O L Y D I S K  R E P R E S E N T A T I O N  F O R M U L A  

For simplicity we consider three-component media so that re(h l, h2)= 
e*/~3 and F(s~, s2) = 1 - re(h1, h2) are functions of two complex variables 
with hl=e~/e3, h2=e2/e3, s t = l / ( 1 - h l )  and s 2 = l / ( 1 - h 2 ) .  Let U ~= 
{Ira s~ >0}  x {Im s2>0}.  As a counterpart of F(s~,s2); U 2 ~ {Im f < 0 }  
we considerf(ffl,  ~2): D 2 ~  {Re f > 0 }  where D2=  {I{~[< 1} x {1~2t <1}  is 
the polydisk, which is conformally equivalent to U 2. We derive the analog 
of (3.1) with i=  k for f i n  D 2, by first giving a polydisk Schwartz formula 
which expresses f restricted to D 2 = {l~l < R} x {1~21 < R }, R < 1, in terms 

~- R} {!w21 = R } .  of an integral of its real part over T R = {Iwll = x 
Cauchy's formula for (~1, ~2) e D~ is 

( 1 )2f;r2 R f (w i 'w2 )  dwldw,  (4.1) 

Let {* = (R2/rfl e i~ be the reflection of { j=rs  es0' in the circle {[wit = R } ,  
j =  t, 2. From the one variable Cauchy formula one can see that if ~1 or ~2 
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or both are replaced by their reflections in the integral in (4.1), then the 
integral vanishes. Therefore f ( ~ ,  ~a) may be written as 

f (~t ,  ~2)=(2@i)2 ffTaRf(w,, w2) 

1 + 1 \ /  1 l \ 
x "-'Tg ~ + . 7 - -7g  dwl dw2 (4.2) 

for any of the four combinations of +'s and - ' s .  With dw/= i Re ~'j dtj, 
f ( ( l ,  if2) has the following equivalent representations: 

f((~l, if2)--- ~ /  f ( t l ,  t2) 

(1 + iQl) P2 
(1 + iQ2) P1 

(I + iQ~)(1 + iQ2) 

PIP2 

dg I d f  2 (4.3) 

where Pj=Re[Hj],  Qs=Im[Hj], H j=(wj+~ j ) / (~ -~ j )  and wj=Re i'j. 
Manipulation of these four forms (2~ yields 

f(~l,  ~'2)= iv(0, 0 )+  I ~ ( H t S 2 + g ~  + H 2 -  1) 

x u(Re <, Re i'2) dt I dr2 (4.4) 

where f =  u + iv. The representation (4.4) can be verified by expanding f in 
a power series f ( ~ ,  ~2)= ~22,~=0 A,,m~'~ and observing that for n, m ~> 1, 

/ 1 \2 e2~:~, 
2A,,,,,~,~2 . . . . . .  - ~2-~)Jo  Jo H, H2Re[A.,,,wTw'~]dt, dt 2 (4.5) 

By taking the weak * limit of u(Re ~'1, Re i'2) dtl dr2 as R ~ 1 and calling 
it 1~(dt 1, dr2) we extend (4.4) to the full polydisk D 2. One should note, 
however, that this # is special, i.e., not all positive measures on T 2 arise 
from the boundary values of holomorphic functions in D2. (31) Indeed, for 
R< 1, u(Re i'~, Re i'2) has nonzero Fourier coefficients only in Z~ w2_~, 
where Z+ = {0, l, 2,...} and Z = - Z + .  This follows from the fact that 
u = � 8 9  and on T~, f has a Fourier series with only nonnegative 
powers of Re & and Re ~~ Thus the Fourier transform of/~ vanishes in the 
interiors of the second and fourth quadrants of Z 2. 

We have now proven necessity in the following: 

822l'40/5-6-4 
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Theorem.  
part in D ~ it is necessary and sufficient that f m a y  be represented as 

For f({ , ,  {~) to be holomorphic with nonnegative real 

l yf (e;q+{,e~'2+{2 e<+{, e"2+~2 ) 
x #(dt l ,  dr2) (4.6) 

where # is a positive Boret measure satisfying 

fi e ~(~ +"2)~(dtl ,  dt2) = 0 when nm < 0, n, m e Z (4.7) 
"2 

Sufficiency is proved by first noting that the series generated by (4.6) con- 
verges uniformly on compact subsets of D z, so that the right side of (4.6) is 
holomorphic in D 2. That the real part of (4.6) is positive follows from the 
fourth form in (4.3) since PIP2 is positive. Representations of.f(~l, ~2) 
equivalent to (4.6) have been given by Kordmyi and Puk/mzky in Ref. 32 
and by Vtadimirov and Drozhzhinov in Ref. 33. 

Because F(sl ,  s:) is analytic for real (sl, s2) when both are off [0, 1], 
the measure i~(dt~, dt2) must vanish on a subset E of T a corresponding to 
those real (s~, Sz). In Ref. 20 it is shown that as (~ ,  ~2)e D z is sent radially 
to E, the real part of (4.6) vanishes identically on E, and that (4.6) gives 
rise to a purely imaginary analytic function on E. A formula for this 
imaginary function is given in Ref. 20, as well as some interesting con- 
sequences of the Fourier condition (4.7) on the smoothness of the measure 
#(dtt ,  dt2). 

5. B O U N D S  FOR M U L T I C O M P O N E N T  M E D I A  

For two-component media the bounds were obtained by examining 
the images of extreme points of the set of positive measures of mass <~ 1 
under the mapping (3.1). Denote M~ = {positive Borel measures ff on T 2 
that satisfy the Fourier condition (4.7) and have total mass ~ t }. The sim- 
plest extreme points of M~ have the form 

dr2 dtt (5.1) 
~* = cea,~(dti ) x 2--7' [a* = ~6t~(dt2) x 2-7 

where 0 ~< t*, t* < 2re and e, fl ~< 1. However, the full set of extreme points 
of MI has not been completely characterized. (34-36~ Nevertheless, we have 
been able to recover the Wiener and Hashin-Shtrikman bounds for three- 
component media with real a~, ~.z, and ~3 by using sums of the measures in 
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(5.1) with appropriate weights. It appears then that such measures give 
extremal values of functions represented by (4.6) for fixed ~1 and if2. Below 
we will give the forms of this conjecture which yield Wiener, or first order 
bounds. In Ref. 18, stronger forms are given, which yield 
Hashin-Shtrikman, or second-order bounds. 

To derive the Wiener bounds we first give the operator representation 
analogous to (3.2) for three-component materials, 

Fik(sl, S2) = P(do)) ZI + ~ Z2 

[( ' ) ' ]  x I + I F x I + - - F Z 2  ek "e, (5.2) 
S 1 $2 

where I is the identity. Note that the operators FZ~ and FZ2 in (5.2) do not 
commute, so that it is not immediately clear how to extend the spectral 
analysis given in Section3 to multicomponent media. For Fs~l > 1 and 
Is21 > 1, (5.2) can be expanded about a homogeneous medium (s~ = 
s2= ~ )  for i=k, 

S 2 S 2 

)~2/~2 (~1/'~2-~-~2/~)~1 ) ~ _ . . . ) e k  ] "ek (5.3) 
S~ S I $2 

If only the volume fractions p, ,  P2, and p3 = 1 - p l - P 2  of the three 
materials are known, then F(s~, s2) in (5.3) is known only to first order 

F(sl, s2) = &  +P2 + ... (5.4) 
S1 $2 

To get the bounds assuming (5.4) for fixed, real s~, s 2 > 1, we state the 
following: 

Hypothesis 1. Let K(sl, s2) be analytic with negative imaginary 
part in U2={Imsi>O}x{Ims2>O} such that K(gl,g2)=K(s~,s2), 
K ( ~ ,  oo)=0,  and K(sl, 52) is analytic for real sl and s2 when both sj and 
s2 are off [0, 1]. If for fixed cq, 72>0  

K(sl, s2) = ~--2 + cq + "'" (5.5) 
$1 $2 
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then for fixed s~, s 2 > 1, K is minimized by 

K(s~, s2) = c~2 + ~2 (5.6) 
S1 $2 

Back on the torus K has a counterpart f({,, ~2)=iK(s~, $2) with ~-= 
(S i - i ) / (S i+  i), j =  1, 2. The minimizer (5.6) corresponds to a sum of the 
measures in (5.1) with (t*, t~) in ~ variables mapping to (0,0) in s 
variables. Note that the functions included under Hypothesis 1 form a 
much broader class than those arising from sums of product measures 
on T:. The point of the conjecture is that K attains its minimum within the 
special class #* +/~]. 

Applying Hypothesis t to F(s, ,  s2) under (5.4) gives 

Fts~,s~)>~+~ (5.7) 
S1 $2 

Doing the same for H ( q ,  t2)= 1 -e3/e* where t~ = 1 - s 1 ,  and t 2 = 1 - s 2 ,  
yields along with (5.7) for e* 

1 
pl/s 1 + p2/~ 2 + p3/,Y.3 <~ g* <~ Pig, + P2~2 --}-/7383 (5.8) 

which are the classical Wiener bounds. These bounds are again attained by 
parallel plane configurations of the materials. 

For complex (sl, s2) �9 U 2, we employ the following: 

Hypothes i s  2. If K(sz, s2) is as in Hypothesis 1 with (5.5), then for 
fixed (s~, s2) �9 U 2, the values of K(st ,  s2) lie inside the region generated by 

K(s , ,  s2) = ~t c~2 -} (5.9) 
S, --Z1 $2--Z2 

as both zl and z2 vary in [ - o %  co]. 

The measures on T 2 that give rise to (5.9) are again of the form 
#1 +#2 ,  where t* and t* vary throughout [0, 27z). The region R3 obtained 
by applying Hypothesis 2 to F under (5.4) can be constructed as follows. 
First note that pl/(Sl - z ,)  and p2/(s2 - z2) with - oo ~< z,, z2 ~< co are both 
circles in the lower half-plane that contain the origin and are thus tangen- 
tial to the real axis. Now add to each point p d ( s , - z , )  the circle 
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p 2 / ( $ 2  - -  22)  , - -  O0 ~< Z 2 ~ 00. T h e  o u t s i d e  boundary o f  R 3 is  a c i r c l e  c h a r a c -  

t e r i z e d  by 

arg ~ =arg \ & 2 ]  (5.10) 

where "arg" dentoes argument and F =  K is as in (5.9) with e~ = p~ and 
c~2= P2. This condition is equivalent to arg(s~-z~) = arg(s2-z2), or z2 = 
(b2/bl) zl + (az - b2al/bl), where sl = al + ibl and s2 = a2 + ib2. Thus the 
outside boundary C3(z~) of R3 is the image of this line in (zl, z2) space 
under (5.9) and can be parameterized in the F plane by 

Pl + p~bl/b2 
C3(z~)= , -oo~<z1~oo (5.11) 

S 1 - - Z  1 

With arg e3 < arg % < arg e~ we can apply the same considerations as above 
to t - e * / e l  as a function of q 2 = l / ( 1 - e z / e i )  and q 3 = I / ( 1 - e j e ~ )  to 
obtain a circular region bounded by 

P2 + P3 Im q2/Im q3 
C~(zi)= , -oo  ~<zi ~< oo (5.12) 

q2--z~ 

In the e* plane we obtain two circular regions R* and R~, The bounds 
obtained by intersecting R~ and R* are sometimes quite crude. It is then 
necessary to intersect these first-order bounds with zeroth-order 
bounds ~3v'~s'2~ which incorporate knowledge of only ~ ,  %, and ~:~ without 
regard to volume fraction. These zeroth-order bounds restrict e* to a 
region bounded by three arcs, each of which may be circular or straight 
depending on the configuration of e~, %, and %, are optimal, and can be 
obtained from measures of the form/~* and #*. 

The complex first-order bounds we obtain in this way do not reduce to 
the classical Wiener bounds when the parameters become real. In addition, 
we have completely ignored the support restrictions on/~ in (4.6) imposed 
by the analyticity of F for certain real (s~, s2). However, under certain cir- 
cumstances parts of these complex bounds are attainable, (3v'~8'2~ and 
Milton (37) has proven them using an extended version of Bergman's trajec- 
tory method. Nevertheless, we expect that the nonattainable sections of the 
bounds can be improved. 
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